Breast Imaging with Electrical Impedance Tomography: a comparison of traditional Quadratic regularization, Total Variation regularization and Level Set Method on in vivo data

نویسندگان

  • A. Borsic
  • M. Soleimani
  • O. Dorn
  • R. Halter
  • A. Hartov
  • K. D. Paulsen
چکیده

Image Reconstruction in Electric Impedance Tomography (EIT) is an ill-posed problem and regularization techniques are needed in order to obtain meaningful images. Though these techniques allows successful reconstruction, they limit the spatial resolution into the reconstructed image. The ability of reconstruction fast spatial transition in the reconstructed conductivity is important in various clinical applications of EIT. In the context of breast imaging and cancer detection, the use of algorithms capable of reconstructing sharp transitions is important as typically one wishes to detect a small cancerous mass, with electrical properties that differ from the background. Traditionally, in EIT, the image reconstruction is formulated as:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In Vivo Impedance Imaging With Total Variation Regularization

We show that electrical impedance tomography (EIT) image reconstruction algorithms with regularization based on the total variation (TV) functional are suitable for in vivo imaging of physiological data. This reconstruction approach helps to preserve discontinuities in reconstructed profiles, such as step changes in electrical properties at interorgan boundaries, which are typically smoothed by...

متن کامل

Joint L and Total Variation Regularization for Magnetic Detection Electrical Impedance Tomography

─ Magnetic detection electrical impedance tomography (MDEIT) is an imaging modality that aims to compute the cross-sectional distribution of the conductivity of a volume from the magnetic flux density surrounding the object. Owing to the Biot-Savart law, the MDEIT inverse problem is inherently ill-conditioned making image reconstruction highly susceptible to the effects of noise and numerical e...

متن کامل

A Level Set based Regularization Framework for EIT Image Reconstruction

Electrical Impedance Tomography (EIT) reconstructs the conductivity distribution within a medium from electrical stimulation and measurements at the medium surface. Level set based reconstruction method (LSRM) has gained attention during the last decade as an effective solution to address the need of reconstructing structures with limited amount of available data. The classical LSRM is based on...

متن کامل

Electrical impedance tomography using level set representation and total variational regularization

In this paper, we propose a numerical scheme for the identification of piecewise constant conductivity coefficient for a problem arising from electrical impedance tomography. The key feature of the scheme is the use of level set method for the representation of interface between domains with different values of coefficients. Numerical tests show that our method can recover sharp interfaces and ...

متن کامل

Total Variation Regularization in Electrical Impedance Tomography

This paper presents an evaluation of the use of Primal Dual Methods for efficiently regularizing the electric impedance tomography (EIT) problem with the Total Variation (TV) functional. The Total Variation functional is assuming an important role in the regularization of inverse problems thanks to its ability to preserve discontinuities in reconstructed profiles. This property is desirable in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009